CREST
Semi-empirical methods are often employed to explore and efficiently sample the conformational space of molecules. The Conformer-Rotamer Ensemble Sampling Tool (CREST) uses the GFN methods to generate ensembles and find low-energy structures. Besides conformational search algorithms, CREST provides a variety of workflows. In the following, we will investigate the (de)protonation site screening.
If you do not have CREST yet, download the latest binary from the website or directly and put it in your path.
For more information about CREST, check out the docs.
Protonation
Our model system will be a dipeptide consisting of alanin and glycin (Ala-Gly). The protonation screening can be requested with:
crest struc.xyz --protonate &
20
C 2.081440 0.615100 -0.508430
C 2.742230 1.824030 -1.200820
N 4.117790 1.799870 -1.190410
C 4.943570 2.827040 -1.822060
C 6.440080 2.569360 -1.637600
O 7.351600 3.252270 -2.069090
N 0.610100 0.695090 -0.538780
O 2.095560 2.724940 -1.739670
O 6.705220 1.463410 -0.897460
H 0.303080 1.426060 0.103770
H 0.338420 1.050680 -1.460480
C 2.488753 -0.593400 -1.198448
H 2.416500 0.557400 0.532050
H 4.614100 1.081980 -0.670550
H 4.699850 3.794460 -1.373720
H 4.722890 2.844690 -2.894180
H 7.687400 1.448620 -0.860340
H 2.029201 -1.457008 -0.719999
H 2.170233 -0.542411 -2.238576
H 3.572730 -0.688405 -1.154998
This uses GFN2-xTB by default. All protomers found by CREST are stored in protonated.xyz
.
Determine the energetic ordering. Does the lowest protomer align with chemical intuition?
Deprotonation
Similar to the protonation, the deprotonation screenig for Ala-Gly can be invoked with:
crest struc.xyz --deprotonate &
20
C 2.081440 0.615100 -0.508430
C 2.742230 1.824030 -1.200820
N 4.117790 1.799870 -1.190410
C 4.943570 2.827040 -1.822060
C 6.440080 2.569360 -1.637600
O 7.351600 3.252270 -2.069090
N 0.610100 0.695090 -0.538780
O 2.095560 2.724940 -1.739670
O 6.705220 1.463410 -0.897460
H 0.303080 1.426060 0.103770
H 0.338420 1.050680 -1.460480
C 2.488753 -0.593400 -1.198448
H 2.416500 0.557400 0.532050
H 4.614100 1.081980 -0.670550
H 4.699850 3.794460 -1.373720
H 4.722890 2.844690 -2.894180
H 7.687400 1.448620 -0.860340
H 2.029201 -1.457008 -0.719999
H 2.170233 -0.542411 -2.238576
H 3.572730 -0.688405 -1.154998
All possible structures are stored in deprotonated.xyz
.
Again, determine the energetic ordering and find the lowest structure.
Combining Protonation and Deprotonation
CREST can combine the protonation and deprotonation screenings to find tautomers.
crest struc.xyz --tautomerize &
20
C 2.081440 0.615100 -0.508430
C 2.742230 1.824030 -1.200820
N 4.117790 1.799870 -1.190410
C 4.943570 2.827040 -1.822060
C 6.440080 2.569360 -1.637600
O 7.351600 3.252270 -2.069090
N 0.610100 0.695090 -0.538780
O 2.095560 2.724940 -1.739670
O 6.705220 1.463410 -0.897460
H 0.303080 1.426060 0.103770
H 0.338420 1.050680 -1.460480
C 2.488753 -0.593400 -1.198448
H 2.416500 0.557400 0.532050
H 4.614100 1.081980 -0.670550
H 4.699850 3.794460 -1.373720
H 4.722890 2.844690 -2.894180
H 7.687400 1.448620 -0.860340
H 2.029201 -1.457008 -0.719999
H 2.170233 -0.542411 -2.238576
H 3.572730 -0.688405 -1.154998
Check out all the tautomers. Can you find the zwitterion? If not, why?
Q: How can you find the zwitter ion?
Hint: In which environment do you usually find this type of compound?
Solution: Add implicit solvation to stabilize charged species via --alpb water